Somatic stiffness of cochlear outer hair cells is voltage-dependent
نویسندگان
چکیده
منابع مشابه
Somatic stiffness of cochlear outer hair cells is voltage-dependent.
The mammalian cochlea depends on an amplification process for its sensitivity and frequency-resolving capability. Outer hair cells are responsible for providing this amplification. It is usually assumed that the membrane-potential-driven somatic shape changes of these cells are the basis of the amplifying process. It is of interest to see whether mechanical reactance changes of the cells might ...
متن کاملPrestin and the dynamic stiffness of cochlear outer hair cells.
The outer hair cell (OHC) lateral wall is a unique trilaminate structure consisting of the plasma membrane, the cortical lattice, and subsurface cisternae. OHCs are capable of altering their length in response to transmembrane voltage change. This so-called electromotile response is presumed to result from conformational changes of membrane-bound protein molecules, named prestin. OHC motility i...
متن کاملStereocilia displacement induced somatic motility of cochlear outer hair cells.
Outer hair cells, isolated from mammalian cochleas, are known to respond to electrical stimulation with elongation or contraction of the cell's cylindrical soma. It is assumed that such shape changes, when driven by the cell's receptor potential in vivo, are a part of the feedback process that underlies cochlear amplification. To date it has not been possible to demonstrate somatic shape change...
متن کاملCochlear amplification, outer hair cells and prestin.
Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has probably co-evolved with a novel hair cell type, ...
متن کاملEffect of voltage-dependent membrane properties on active force generation in cochlear outer hair cell.
A computational model is proposed to analyze the active force production in an individual outer hair cell (OHC) under high-frequency conditions. The model takes into account important biophysical properties of the cell as well as constraints imposed by the surrounding environment. The biophysical properties include the elastic, piezoelectric, and viscous characteristics of the cell wall. The ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1999
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.96.14.8223